
Maize field-level predictions using satellite images
This notebook implements the experiment pipeline for predicting the field-level

1. harvested dry matter yield in tons per hectare and
2. dry mater percentage of the yield

on maize fields using satellite images.

The model scores and artifacts of the individual experiment are stored on the MLflow server maintained by the SEGES data science team, but all experiments are described and
concluded in the bottom of this notebook.

For more project details see the JIRA feature MPSI-15 (https://jira.seges.dk/browse/MPSI-15) and the "Maize Prognosis from Satellite Images" Confluence space
(https://confluence.seges.dk/display/MPSI/Maize+Prognosis+from+Satellite+Images).

Important notebook execution details:

The notebook uses multiple utility scripts and to ensure the correct versions of these scripts the notebook should be executed from the git tag: "MPSI-15_report
(https://bitbucket.seges.dk/projects/DDS/repos/maize_prognosis_from_satellite_images/browse?at=refs%2Ftags%2FMPSI-15_report)".
The notebook have been executed with the "py37_v8" Conda environment. You can find the environment YAML file on this Confluence page
(https://confluence.seges.dk/x/E5QQBw).
To reproduce the notebook from an empty data folder on Ahsoka, change the cell under the section Collect satellite, DTM, and DMI data from "Raw" to "Code". Without
SatHub cache the cell takes approx. 3,5 hour to complete and with cache it takes approx. 20 min.

Table of Contents
1. Collect maize field-level yield data

A. Clean maize yield DataFrame
a. Remove rows with all column values duplicated
b. Remove all rows with duplicated FieldCropId
c. Remove fields harvest date outside interval
d. Remove fields with yield outside range 5-26 t/ha

B. Add DMDB field polygons to maize yield data
a. Remove edge case fields

i. Remove too narrow fields which will end up with a Dataset polygon mask filled with False
ii. Remove fields with too cloudy images to create non-null features

C. Present maize yield data
D. Save maize yield GeoDataFrame to file
E. Reload the maize yield GeoDataFrame from file

2. Collect satellite, DTM, and DMI data
3. Machine learning workflow

A. Create features and target
B. Split features and target into training and validation sets

a. Present number of cloudfree images per field
C. Train machine learning model
D. Validate trained model
E. Present model scores
F. Save experiment in MLflow

4. Cleanup files on Ahsoka
5. Present MLflow experiments

A. Maize dry matter yield
B. Maize dry matter percentage

6. Experiment description
A. Maize yield experiments
B. Maize dry matter percentage experiments

7. Conclusion
A. The dataset
B. The maize yield
C. The maize dry matter percentage
D. General observations

8. Future work

In [1]: from IPython.display import HTML
HTML('''<script>code_show_err=true;function code_toggle_err(){if(code_show_err){$('div.output_stderr').hide();}else{$('div.output
_stderr').show();}code_show_err=!code_show_err}$(document).ready(code_toggle_err);</script>To toggle on/off output_stderr, clic
k here.''')

Out[1]: To toggle on/off output_stderr, click here.

https://jira.seges.dk/browse/MPSI-15
https://confluence.seges.dk/display/MPSI/Maize+Prognosis+from+Satellite+Images
https://bitbucket.seges.dk/projects/DDS/repos/maize_prognosis_from_satellite_images/browse?at=refs%2Ftags%2FMPSI-15_report
https://confluence.seges.dk/x/E5QQBw
javascript:code_toggle_err()

In [2]: %load_ext watermark
print('Watermark of notebook execution:')
%watermark
%matplotlib inline

from pathlib import Path
import shutil

import dask
import dask.distributed
from gaffa.dask_task.remote import mkdir
from gaffa.local_task.environment import check_conda_env, get_conda_env_name
import git
import geopandas as gpd
import geoviews as gv
from IPython.display import display
import pandas as pd
from sklearn.ensemble import GradientBoostingRegressor

from MPSI_15_DMDB_data_utils import (
 add_DMDB_polygons, check_gdf_equals, collect_maize_field_level_yield_df,
 viz_gdf_polygons)

from MPSI_15_raster_data_utils import run_EO_dataset_pipeline
from MPSI_15_feature_utils import run_featurization_pipeline
from MPSI_15_ML_utils import (
 run_split_data_pipeline, run_training_pipeline, run_prediction_pipeline,
 present_model_scores)

from MPSI_15_utils import (
 collect_MLflow_runs, save_MLflow_experiment, query_yes_no,
 run_number_of_images, show_score_table, viz_model_scores)

NOTE: hvplot has to be imported after pandas have been imported.
import hvplot.pandas
pd.set_option('display.max_columns', 100)

Create dask client to Ahsoka
client = dask.distributed.Client('localhost:8786')
client.upload_file('./MPSI_15_DMDB_data_utils.py')
client.upload_file('./MPSI_15_raster_data_utils.py')
client.upload_file('./MPSI_15_feature_utils.py')
client.upload_file('./MPSI_15_ML_utils.py')
client.upload_file('./MPSI_15_utils.py')
display(client)

Check Conda environment file and running locally and on Dask scheduler
conda_env_name = get_conda_env_name(Path('./conda_environment.yml'))
print(check_conda_env(conda_env_name))
print(dask.delayed(check_conda_env)(conda_env_name).compute())

Global variables
DATA_PATH = Path('/scratch/MPSI-15_maize_field_level_yield_prediction/')
mkdir(DATA_PATH).compute()
print(f'Created MPSI folder "{DATA_PATH.absolute()}" on Ahsoka.')
WIDGET_WIDTH = 900 # Restricted to 900 px as it must fit in the HTML export.
HV_HEIGHT = 600
HV_XROTATION = 60

DATA_CONFIG = {
 'yield_yearly_path': Path('./tsf20191111_udbyttedata_2017_2018_2019.xlsx'),
 'yield_2019_path': Path('./tsf20191120_udbyttedata_2019.xlsx'),
 'valid_harvest_date_interval': {
 'start_month':7, 'start_day': 20,
 'end_month':11, 'end_day': 15},
 'sample_indices_names': ['FieldCropId', 'harvestYear']

}
EO_CONFIG = {
 'cache_path': Path('/scratch/MPSI-15_sentinelhub_cache/'),
 'resolution': 10,
 'season_start': '02-01', # Note: Date in MM-DD format
 'season_end': '12-01', # Note: Date in MM-DD format
 'satellite': 'S2',
 'product': 'L1C',
 'output': [
 # Actual channels analyses
 'B01', 'B02', 'B03', 'B04', 'B05', 'B06', 'B07', 'B08', 'B8A', 'B09',
 'B10', 'B11', 'B12', 'NDRE',
 # Note: build_data_dependencies() in SatHub v1.4 does not support
 # multiple cloud masks, thus we manually specify the bands for the
 # utilized cloud masks.
 # Note: Bands used for MSScvv
 'B03', 'B04',
 # Note: Bands used for S2cloudless
 'B01', 'B02', 'B04', 'B05', 'B08', 'B8A', 'B09', 'B10', 'B11', 'B12'],
 'cloud_masks': ['S2cloudless', 'MSScvm'],
 'S2cloudless_threshold': 0.4,
 'DK_DTM_tile_path': Path(
 '/projects/BDICG/3 Hoejdedata DK/DDS_unpacked/tiles/'),
 'data_params': ['airtemp', 'glorad', 'maxtemp', 'mintemp', 'prec', 'evapo',
 'soiltemp'],
 'data_sources': ['obs'],
 'data_path': DATA_PATH/'EO_datasets'

}

FEATURE_CONFIG = {
 'time_column_str_format': '%m-%d - %B %-d',

}
FEATURE_HYPERPARAM = {
 'max_cloud_proba': 0.7,
 'time_span': ('04-01', '09-15'), # Note: Date in MM-DD format
 'feature_time_delta': '7D',
 'S2_time_series_features': [
 'S2_L1C_B01', 'S2_L1C_B02', 'S2_L1C_B03', 'S2_L1C_B04',
 'S2_L1C_B05', 'S2_L1C_B06', 'S2_L1C_B07', 'S2_L1C_B08', 'S2_L1C_B8A',
 'S2_L1C_B09', 'S2_L1C_B10', 'S2_L1C_B11', 'S2_L1C_B12', 'S2_L1C_NDRE'],
 'DTM_features': [
 'field_relative_mean', 'slope_pct', 'slope_angle', 'slope_aspect'],
 'position_and_precrop_features': ['geox', 'geoy', 'regionId'],
 'DMI_agg_features': {
 'DMI_air_temperature': ['mean', 'std', 'min', 'max'],
 'DMI_evaporation': ['mean', 'std', 'min', 'max', 'sum'],
 'DMI_global_radiation': ['mean', 'std', 'min', 'max', 'sum'],
 'DMI_maximum_temperature': ['mean', 'std', 'min', 'max'],
 'DMI_minimum_temperature': ['mean', 'std', 'min', 'max'],
 'DMI_corrected_precipitation': ['mean', 'std', 'min', 'max', 'sum'],
 'DMI_soil_temperature': ['mean', 'std', 'min', 'max']},
 'DMI_prognosis_days_delta': 0,
 'target_name': 'drymatterPercent',
 'select_harvest_year': None # None if select all years available

}
ML_CONFIG = {
 'random_state': 42,
 'validation_size': 0.2,
 'validation_year': None,
 'model_path': DATA_PATH/'regressor_maize_yield.joblib',
 'train_predictions_path': DATA_PATH/'training_predictions.parquet.brotli',
 'val_predictions_path': DATA_PATH/'validation_predictions.parquet.brotli'
 }

ML_HYPERPARAM = {
 'sklearn_regressor': GradientBoostingRegressor
 }

The keyword arguments passed to the model.
NOTE: use the elements from the CONFIG and HYPERPARAM dictionaries above.
MODEL_KEY_ARGS = {
 'random_state': ML_CONFIG['random_state']

}
Pipeline configurations and hyperparameters save as MLflow artifacts
CONFIGURATIONS = {
 'DATA_CONFIG': DATA_CONFIG,
 'EO_CONFIG': EO_CONFIG,
 'FEATURE_CONFIG': FEATURE_CONFIG,
 'ML_CONFIG': ML_CONFIG

}
HYPERPARAMETERS = {
 'FEATURE_HYPERPARAM': FEATURE_HYPERPARAM,
 'ML_HYPERPARAM': ML_HYPERPARAM,
 'MODEL_KEY_ARGS': MODEL_KEY_ARGS

}

Collect maize field-level yield data
See notebook "MPSI-14_understand_data.ipynb" for more in depth understanding and exploration of the maize field-level yield data.

Watermark of notebook execution:
2019-12-09T11:37:01+01:00

CPython 3.7.4
IPython 7.8.0

compiler : GCC 7.3.0
system : Linux
release : 5.0.0-37-generic
machine : x86_64
processor : x86_64
CPU cores : 4
interpreter: 64bit

Client
Scheduler: tcp://localhost:8786
Dashboard: http://localhost:8787/status (http://localhost:8787/status)

Cluster
Workers: 20
Cores: 20
Memory: 8.01 TB

Conda environment check passed on "ubuntuVM". Environment in use is: "py37_v8" from: "Jupyter notebook"
Conda environment check passed on "ahsoka". Environment in use is: "py37_v8" from: "Python script"
Created MPSI folder "/scratch/MPSI-15_maize_field_level_yield_prediction" on Ahsoka.

http://localhost:8787/status

In [3]: df_detail_maize_yields = collect_maize_field_level_yield_df(DATA_CONFIG)
print(f'The dataset contains data from {df_detail_maize_yields.shape[0]} fields')

Clean maize yield DataFrame

Remove rows with all column values duplicated

In [4]: df_detail_maize_yields = df_detail_maize_yields.drop_duplicates(keep=False)

assert (len(df_detail_maize_yields[
 df_detail_maize_yields.duplicated(keep=False)]) == 0), (
 'Dataframe still contains duplicated rows!')

print(f'DataFrame now contains "{len(df_detail_maize_yields)}" rows.')

Remove all rows with duplicated FieldCropId

We assume the rows with duplicated FieldCropId have been harvested in two individual task, thus their area such sum up to near the total area of the field polygon.

However, as a simple start on our work, we have decided to remove all rows with duplicated FieldCropId.

In [5]: df_detail_maize_yields = df_detail_maize_yields.drop_duplicates(
 subset='FieldCropId', keep=False)

assert len(df_detail_maize_yields[df_detail_maize_yields.duplicated(
 subset='FieldCropId', keep=False)]) == 0, (
 'Dataframe still contains duplicated FieldCropIds!')

print(f'DataFrame now contains "{len(df_detail_maize_yields)}" rows.')

Remove fields harvest date outside interval

As seen in the histogram below, some yields have a earlier harvest date (in the "theDate" column) than the majority of the maize fields. We assume the fields with an pearly
harvest data as faulty registrations, thus removing them from our analysis.

Missing fields (i.e. FieldCropId) from former 2019 sheet in the new 2019 sheet:
[23197647 23197647]

Original maize yield DataFrame contains "3114" rows.

The dataset contains data from 3114 fields

FieldCropId FarmId harvestYear successionNo sproutingDate stdCropNormNumber stdCropName preCropId preCropName theDate area registered

1290 18864494 29606 2018 1 NaT 6204 Majshelsæd 5909.0 Vårbyg 2018-
09-12 7.83 1

1291 18908796 63955 2018 1 NaT 6204 Majs, helsæd 6204.0 Majs, helsæd 2018-
08-28 0.62 1

1292 18908796 63955 2018 1 NaT 6204 Majs, helsæd 6204.0 Majs, helsæd 2018-
08-28 0.64 1

1293 18908796 63955 2018 1 NaT 6204 Majs, helsæd 6204.0 Majs, helsæd 2018-
08-28 0.65 1

1294 18908796 63955 2018 1 NaT 6204 Majs, helsæd 6204.0 Majs, helsæd 2018-
08-28 7.24 1

DataFrame now contains "3112" rows.

DataFrame now contains "2721" rows.

In [6]: df_detail_maize_yields.theDate.hvplot.hist(
 bins=100, height=400, width=WIDGET_WIDTH,
 title='Histogram of maize field harvest dates')

In [7]: df_detail_maize_yields = df_detail_maize_yields[
 (((df_detail_maize_yields.theDate.dt.month == DATA_CONFIG['valid_harvest_date_interval']['start_month']) &
 (df_detail_maize_yields.theDate.dt.day >= DATA_CONFIG['valid_harvest_date_interval']['start_day'])) |
 (df_detail_maize_yields.theDate.dt.month > DATA_CONFIG['valid_harvest_date_interval']['start_month'])) &
 (((df_detail_maize_yields.theDate.dt.month == DATA_CONFIG['valid_harvest_date_interval']['end_month']) &
 (df_detail_maize_yields.theDate.dt.day <= DATA_CONFIG['valid_harvest_date_interval']['end_day'])) |
 (df_detail_maize_yields.theDate.dt.month < DATA_CONFIG['valid_harvest_date_interval']['end_month']))]

print(f'DataFrame now contains "{len(df_detail_maize_yields)}" rows.')

Remove fields with yield outside range 5-26 t/ha

We see that the standard deviation is much higher than expected and that the minimum and maximum yield in t/ha is also outside the expected range 5-26 t/ha. Thus we need
to remove these outliers.

In [8]: df_detail_maize_yields.drymatterYield_ton.describe()

In [9]: df_detail_maize_yields = df_detail_maize_yields[
 df_detail_maize_yields.drymatterYield_ton.between(5, 26)]

print(f'DataFrame now contains "{len(df_detail_maize_yields)}" rows.')

Add DMDB field polygons to maize yield data
For the later collection of earth observation data we need the area of interest, i.e. the field location. We collect this as the field polygon stored in DMDB (Dansk mark database).

Note that, because not all FieldCropIds in the maize data has a corresponding field polygon in the data fetched from DMDB, we remove the maize yield rows without an
polygon.

Out[6]:

(http

DataFrame now contains "2701" rows.

Out[8]: count 2701.000000
mean 14.024317
std 92.787771
min 0.500200
25% 9.677419
50% 11.711227
75% 13.477050
max 3420.000000
Name: drymatterYield_ton, dtype: float64

DataFrame now contains "2618" rows.

https://bokeh.pydata.org/

FieldCropId_narrow = 24359059 gdf_too_narrow_field = gdf_maize_yields.loc[FieldCropId_narrow, :] print(f'field area of FieldCropId == {FieldCropId_narrow}: ' + f'"
{gdf_too_narrow_field.iloc[0].area.compute()}" km2.') viz_gdf_polygons(gdf_too_narrow_field, 'FieldCropId24359059')# Remove the single field from the GeoDataFrame
gdf_maize_yields = gdf_maize_yields.drop(index=[FieldCropId_narrow], level='FieldCropId') print('\ngdf_maize_yields now contains ' + f'"{gdf_maize_yields.shape[0].compute()}"
rows.')

In [10]: gdf_maize_yields = add_DMDB_polygons(
 df_detail_maize_yields, DATA_CONFIG, client)

Remove edge case fields

Remove too narrow fields which will end up with a Dataset polygon mask filled with False

We remove the field with the FieldCropId == 24359059 as its polygon mask will be filled with False values when rasterized by SatHub. As seen below the polygon has a
small diagonal area. This results in that each pixel of the rasterized polygon will have an area overlapping with an area not inside the polygon, thus removed by SatHub as we
see such polygons pixels to contains noise.

However, after later iteration of the pipeline, the field "24359059" have already been removed by the section Remove fields with yield outside range 5-26 t/ha, thus the following
cells have been changed to "Raw".

Remove fields with too cloudy images to create non-null features

We remove fields from the analysis as the collected Sentinel-2 images of them contains to many cloudy images to create non-null features. The problem is that we need cloud
free images to interpolate the images values over the growth season. The fields we remove are different for different prediction date hence we remove them accordingly.

Enter your credentials to the host: "dev-sql-plant.vfltest.dk"

Connection is established using valid credentials.

Starting DMDB data collection...
[##] | 100% Completed | 2min 33.1s

df_field_polygons now contains "2563" rows.

Merging maize yield with DMDB field polygons...
[##] | 100% Completed | 0.2s

df_detail_maize_yields now contains "2618" rows.

df_detail_maize_polygon_yields now contains "2563" rows.

Constructing GeoDataFrame with field polygons...
[##] | 100% Completed | 0.7s

gdf_maize_yields now contains "2563" rows. And we index the fields on : "['FieldCropId', 'harvestYear']".

FarmId successionNo sproutingDate stdCropNormNumber stdCropName preCropId preCropName theDate area registered yieldNa

FieldCropId harvestYear

18864494 2018

29606 1 NaT 6204 Majshelsæd 5909.0 Vårbyg 2018-
09-12 7.83 1 Grø

(udbytt

18908801 2018

63955 1 NaT 6204 Majs, helsæd 6204.0 Majs, helsæd 2018-
08-28 4.29 1 Grø

(udbytt

18908802 2018

63955 1 NaT 6204 Majs, helsæd 6204.0 Majs, helsæd 2018-
08-28 1.63 1 Grø

(udbytt

19117041 2018

38974 1 NaT 6204 Silomajs 6082.0 Kl.græs, s. 11-
30

2018-
09-06 3.23 1 Grø

(udbytt

19127207 2018

51913 1 NaT 6204 Silomajs 5923.0 Vinterhvede 2018-
09-04 9.08 1 Grø

(udbytt

In [11]: fieldCropIds_too_cloudy = []

We use 2019 as a year, but it has no influence on the if statements as they
only differ on the dates.
dummy_year = 2019
time_span_end = pd.Timestamp(
 f'{dummy_year}-{FEATURE_HYPERPARAM["time_span"][1]}')

We only check on the timespan end date as our experiment curently only
have changes this date
if time_span_end >= pd.Timestamp(f'{dummy_year}-07-15'):
 fieldCropIds_too_cloudy.extend([
 19274676, 23197646, 19330525, 19330523, 19937848, 19330524, 22701507,
 21345424, 21499353, 21588033])

if time_span_end >= pd.Timestamp(f'{dummy_year}-08-01'):
 fieldCropIds_too_cloudy.extend([20111507])

if time_span_end >= pd.Timestamp(f'{dummy_year}-08-15'):
 fieldCropIds_too_cloudy.extend([19273294, 19273421, 22576367, 23667607])

if time_span_end >= pd.Timestamp(f'{dummy_year}-09-01'):
 fieldCropIds_too_cloudy.extend([
 21313758, 21520350, 21608796, 21861556, 21861623, 22016451, 22017077,
 22495431, 22651406, 23173865, 23173891, 23196074, 23227198, 23384518,
 23474729, 23536045, 23537045, 23537180, 23537189, 23593262, 23667626,
 23849865])

gdf_maize_yields = gdf_maize_yields.drop(
 index=fieldCropIds_too_cloudy, level='FieldCropId')

print(f'The following "{len(fieldCropIds_too_cloudy)}" fields with the '
 'FieldCropId have been removed from the analysis: ' +
 f'"{fieldCropIds_too_cloudy}".')

print('\ngdf_maize_yields now contains ' +
 f'"{gdf_maize_yields.shape[0].compute()}" rows.')

Remove following fields due to nan-values from new precrop feature
The field level features preCropId and preCropDirectorateCropNormNumber with precrop informations result in some of fields containing nan-values. We remove these
fields if we have the two mentioned features.

In [12]: fieldCropIds_with_nans = []
if 'preCropDirectorateCropNormNumber' in FEATURE_HYPERPARAM[
 'position_and_precrop_features'] or 'preCropId' in FEATURE_HYPERPARAM[
 'position_and_precrop_features']:
 fieldCropIds_with_nans = gdf_maize_yields[FEATURE_HYPERPARAM[
 'position_and_precrop_features']][
 gdf_maize_yields['preCropDirectorateCropNormNumber'].isna() |
 gdf_maize_yields['preCropId'].isna()].index.get_level_values(
 'FieldCropId').to_list().compute()

 gdf_maize_yields = gdf_maize_yields.drop(
 index=fieldCropIds_with_nans, level='FieldCropId')

print(f'The following "{len(fieldCropIds_with_nans)}" fields with the '
 'FieldCropId have been removed from the analysis: ' +
 f'"{fieldCropIds_with_nans}".')

print('\ngdf_maize_yields now contains ' +
 f'"{gdf_maize_yields.shape[0].compute()}" rows.')

Present maize yield data

Present the number of rows and first 5 rows in the GeoDataFrame.

The following "37" fields with the FieldCropId have been removed from the analysis: "[19274676, 23197646, 19330525, 19330523, 19
937848, 19330524, 22701507, 21345424, 21499353, 21588033, 20111507, 19273294, 19273421, 22576367, 23667607, 21313758, 21520350,
21608796, 21861556, 21861623, 22016451, 22017077, 22495431, 22651406, 23173865, 23173891, 23196074, 23227198, 23384518, 2347472
9, 23536045, 23537045, 23537180, 23537189, 23593262, 23667626, 23849865]".

gdf_maize_yields now contains "2526" rows.

The following "0" fields with the FieldCropId have been removed from the analysis: "[]".

gdf_maize_yields now contains "2526" rows.

In [13]: print('gdf_maize_yields now contains ' +
 f'"{gdf_maize_yields.shape[0].compute()}" rows.')

gdf_maize_yields.head().compute()

Present non-null row count, mean, std, min, 25% percentile, 50% percentile, 75% percentile, and max per numeric column in the GeoDataFrame.

In [14]: gdf_maize_yields.describe().compute()

Present non-null row count, unique count, top (most common value), frequency (most common value’s frequency), first value, and last value per text column in the
GeoDataFrame.

In [15]: gdf_maize_yields.describe(include='object').compute()

Present non-null row count, unique count, top (most common value), frequency (most common value’s frequency), first timestamp, and last timestamp per time column in the
GeoDataFrame.

In [16]: gdf_maize_yields.describe(include='datetime64[ns]').compute()

gdf_maize_yields now contains "2526" rows.

Out[13]:
FarmId successionNo sproutingDate stdCropNormNumber stdCropName preCropId preCropName theDate area registered yieldNa

FieldCropId harvestYear

18864494 2018

29606 1 NaT 6204 Majshelsæd 5909.0 Vårbyg 2018-
09-12 7.83 1 Grø

(udbytt

18908801 2018

63955 1 NaT 6204 Majs, helsæd 6204.0 Majs, helsæd 2018-
08-28 4.29 1 Grø

(udbytt

18908802 2018

63955 1 NaT 6204 Majs, helsæd 6204.0 Majs, helsæd 2018-
08-28 1.63 1 Grø

(udbytt

19117041 2018

38974 1 NaT 6204 Silomajs 6082.0 Kl.græs, s. 11-
30

2018-
09-06 3.23 1 Grø

(udbytt

19127207 2018

51913 1 NaT 6204 Silomajs 5923.0 Vinterhvede 2018-
09-04 9.08 1 Grø

(udbytt

Out[14]:
FarmId successionNo stdCropNormNumber preCropId area registered quantity normQuantity totalQuantity unitId qualitypara

count 2526.000000 2526.000000 2526.000000 2.513000e+03 2526.000000 2526.000000 2526.000000 0.0 2526.000000 2526.0

mean 47834.109660 1.014648 6276.264450 1.094050e+04 6.846952 0.993666 34.553487 NaN 237.921741 3.0

std 26079.709224 0.120162 737.317685 8.792603e+04 5.492695 0.079350 8.560839 NaN 200.300580 0.0

min 6542.000000 1.000000 6204.000000 5.909000e+03 0.020000 0.000000 13.111785 NaN 0.556364 3.0

25% 27499.000000 1.000000 6204.000000 6.086000e+03 3.010000 1.000000 29.051742 NaN 96.595750 3.0

50% 41022.000000 1.000000 6204.000000 6.204000e+03 5.350000 1.000000 34.478365 NaN 182.723168 3.0

75% 68503.000000 1.000000 6204.000000 6.204000e+03 9.330000 1.000000 39.899170 NaN 314.418275 3.0

max 95446.000000 2.000000 13803.000000 1.678547e+06 55.000000 1.000000 76.493151 NaN 1825.686000 3.0

Out[15]:
stdCropName preCropName yieldName unitName QualityName dirCrop dirPreCrop Postdistrikt KOMNAVN regionNavn

count 2526 2513 2526 2526 2526 2526 2513 2425 2512 2526

unique 11 109 1 1 1 1 37 87 25 3

top Silomajs Silomajs Grønmasse (udbyttemåling) ton Tørstof % Silomajs Silomajs Rødding Vejen Syddanmark

freq 1101 776 2526 2526 2526 2526 1579 151 419 1315

Out[16]:
sproutingDate theDate

count 112 2526

unique 29 123

top 2019-05-17 00:00:00 2018-09-06 00:00:00

freq 21 74

first 2017-05-08 00:00:00 2017-09-15 00:00:00

last 2019-05-17 00:00:00 2019-10-25 00:00:00

Present yearly non-null row count, mean, std, min, 25% percentile, 50% percentile, 75% percentile, and max for drymatterYield_ton :

In [17]: seleted_columns = ['drymatterYield_ton']
gdf_maize_yields[seleted_columns].groupby(
 level='harvestYear').describe().T.compute()

Histogram of harvest dates.

In [18]: gdf_maize_yields.theDate.compute().hvplot.hist(
 bins=100, height=400, width=WIDGET_WIDTH)

Visualize maize field locations

Out[17]:
harvestYear 2017 2018 2019

drymatterYield_ton count 645.000000 986.000000 895.000000

mean 11.668460 11.166845 12.581244

std 2.500917 3.071559 2.751556

min 5.227670 5.162719 5.011600

25% 10.033602 9.011576 11.138400

50% 11.719155 11.140094 12.599154

75% 13.155224 12.944145 14.306906

max 22.745600 25.015365 25.070468

Out[18]:
(http

https://bokeh.pydata.org/

NOTE: we remove or mark this cell as raw, for testing purposes gdf_maize_yields = gdf_maize_yields.sample(10, random_state=42) gdf_maize_yields =
client.persist(gdf_maize_yields) gdf_maize_yields.compute()

In [19]: gv_field = viz_gdf_polygons(
 gdf_maize_yields, title='Field polygons', width=WIDGET_WIDTH)

gv_field

Save maize yield GeoDataFrame to file

In [20]: gdf_maize_yields_saved = gdf_maize_yields
del gdf_maize_yields
Reset index to save the index as columns, because `to_file()` do not save the
index to file.
gdf_maize_yields_reset_index = gdf_maize_yields_saved.reset_index()
gdf_maize_yields_reset_index.to_file(
 DATA_PATH/'gdf_maize_yields.gpkg', layer='maize_yields',
 driver="GPKG").compute()

del gdf_maize_yields_reset_index

Reload the maize yield GeoDataFrame from file

In [21]: # Load and set indeces on GeoDataFrame
gdf_maize_yields = dask.delayed(gpd.read_file)(
 DATA_PATH/'gdf_maize_yields.gpkg')

gdf_maize_yields = gdf_maize_yields.set_index(
 DATA_CONFIG['sample_indices_names'])

Change dtypes to same as saved GeoDataFrame
gdf_maize_yields = gdf_maize_yields.assign(
 sproutingDate=gdf_maize_yields.sproutingDate.astype('datetime64'),
 theDate=gdf_maize_yields.theDate.astype('datetime64'),
 normQuantity=gdf_maize_yields.normQuantity.astype('float64'))

In [22]: check_gdf_equals(gdf_maize_yields_saved, gdf_maize_yields)
del gdf_maize_yields_saved

Collect satellite, DTM, and DMI data
We collect satellite images, DTM (Danish terrain model) data, and Danish Meteorological Institute (DMI) data.

In [23]: run_EO_dataset_pipeline(
 gdf_maize_yields, EO_CONFIG, client)

Out[19]:
(http

© OpenStreetMap (https://www.openstreetmap.org/copyright) contributors

Starting Sathub workflow...
[##] | 100% Completed | 20min 19.8s

https://bokeh.pydata.org/
https://www.openstreetmap.org/copyright

Machine learning workflow

Create features and target

In [24]: df_features, df_target = run_featurization_pipeline(
 gdf_maize_yields, EO_CONFIG['data_path'], DATA_CONFIG, FEATURE_CONFIG,
 FEATURE_HYPERPARAM, client)

Split features and target into training and validation sets

Starting featurization...
[##] | 100% Completed | 7min 4.8s

df_features now contains "2526" samples and "1087" features.

df_target now contains "2526" samples and "1" target.

drymatterPercent

FieldCropId harvestYear

16456433 2017 34.676

16456460 2017 36.891

18099423 2019 30.900

18099424 2019 29.690

18099425 2019 29.223

S2_L1C_B01_04-
01 - April 1

S2_L1C_B01_04-
08 - April 8

S2_L1C_B01_04-
15 - April 15

S2_L1C_B01_04-
22 - April 22

S2_L1C_B01_04-
29 - April 29

S2_L1C_B01_05-
06 - May 6

S2_L1C_B01_05-
13 - May 13

S2_L1C_B01
20 - May 20

FieldCropId harvestYear

16456433 2017 0.146990 0.144004 0.141018 0.138031 0.135045 0.132059 0.132992 0.13

16456460 2017 0.145500 0.143364 0.141239 0.139114 0.136989 0.134864 0.136347 0.13

18099423 2019 0.133002 0.153474 0.140524 0.124062 0.129247 0.127983 0.126718 0.12

18099424 2019 0.134235 0.155353 0.141377 0.124055 0.129546 0.128706 0.127865 0.12

18099425 2019 0.134846 0.152259 0.141530 0.124549 0.126453 0.121435 0.122000 0.12

5 rows × 1087 columns

In [25]: (df_train_features, df_val_features,
df_train_target, df_val_target) = run_split_data_pipeline(
 df_features, df_target, ML_CONFIG, client)

Present number of cloudfree images per field

In [26]: df_number_images_train = run_number_of_images(
 df_train_features.index.compute(), EO_CONFIG['data_path'],
 FEATURE_HYPERPARAM['time_span']).compute()

df_number_images_val = run_number_of_images(
 df_val_features.index.compute(), EO_CONFIG['data_path'],
 FEATURE_HYPERPARAM['time_span']).compute()

mean_number_images = [
 df_number_images_train.mean().add_suffix('_mean_train').to_dict(),
 df_number_images_val.mean().add_suffix('_mean_val').to_dict()]

Splitting data randomly into "0.8/0.2" training and validation set, respectively...

First 5 rows in training feature DataFrame:

First 5 rows in training target DataFrame:

drymatterPercent

FieldCropId harvestYear

19099351 2017 36.664

23566976 2019 34.718

23593290 2019 28.000

23594526 2019 39.554

19080099 2017 42.077

First 5 rows in validation feature DataFrame:

First 5 rows in validation target DataFrame:

drymatterPercent

FieldCropId harvestYear

23526633 2018 34.437

21247344 2018 37.634

19126864 2017 37.367

21470608 2018 35.531

22001372 2018 38.700

S2_L1C_B01_04-
01 - April 1

S2_L1C_B01_04-
08 - April 8

S2_L1C_B01_04-
15 - April 15

S2_L1C_B01_04-
22 - April 22

S2_L1C_B01_04-
29 - April 29

S2_L1C_B01_05-
06 - May 6

S2_L1C_B01_05-
13 - May 13

S2_L1C_B01
20 - May 20

FieldCropId harvestYear

19099351 2017 0.126654 0.127923 0.129193 0.130462 0.131731 0.132483 0.132545 0.13

23566976 2019 0.123926 0.152000 0.138670 0.127840 0.148555 0.149164 0.148662 0.15

23593290 2019 0.135063 0.123074 0.132935 0.131010 0.137516 0.140021 0.142525 0.15

23594526 2019 0.143858 0.131961 0.140074 0.134050 0.144998 0.158149 0.143220 0.14

19080099 2017 0.143357 0.144811 0.145693 0.146575 0.147457 0.127240 0.130425 0.13

5 rows × 1087 columns

S2_L1C_B01_04-
01 - April 1

S2_L1C_B01_04-
08 - April 8

S2_L1C_B01_04-
15 - April 15

S2_L1C_B01_04-
22 - April 22

S2_L1C_B01_04-
29 - April 29

S2_L1C_B01_05-
06 - May 6

S2_L1C_B01_05-
13 - May 13

S2_L1C_B01
20 - May 20

FieldCropId harvestYear

23526633 2018 0.144604 0.147815 0.145275 0.149693 0.143042 0.134893 0.148858 0.14

21247344 2018 0.148126 0.148161 0.146736 0.145866 0.143454 0.138483 0.142393 0.14

19126864 2017 0.132990 0.134579 0.136167 0.137756 0.139345 0.139817 0.138800 0.13

21470608 2018 0.453744 0.148822 0.140510 0.136469 0.124326 0.119678 0.137719 0.13

22001372 2018 0.139936 0.136129 0.134022 0.129035 0.129650 0.130265 0.143127 0.13

5 rows × 1087 columns

In [27]: df_number_images_train.hvplot.hist(
 bins=100, height=400, width=WIDGET_WIDTH,
 title='Number of images for training fields').opts(
 legend_position='top_left')

In [28]: df_number_images_val.hvplot.hist(
 bins=100, height=400, width=WIDGET_WIDTH,
 title='Number of images for validation fields').opts(
 legend_position='top_left')

Out[27]:

(http

Out[28]:

(http

https://bokeh.pydata.org/
https://bokeh.pydata.org/

In [29]: print('Present non-null row count, mean, std, min, 25% percentile, ' +
 '50% percentile, 75% percentile, and max number of images over ' +
 'all training fields.')

display(df_number_images_train.describe())

print('Present non-null row count, mean, std, min, 25% percentile, ' +
 '50% percentile, 75% percentile, and max number of images over ' +
 'all validation fields.')

display(df_number_images_val.describe())

Train machine learning model

In [30]: df_train_predictions = run_training_pipeline(
 df_train_features, df_train_target, ML_HYPERPARAM['sklearn_regressor'],
 MODEL_KEY_ARGS, ML_CONFIG, client)

Validate trained model

Present non-null row count, mean, std, min, 25% percentile, 50% percentile, 75% percentile, and max number of images over all tr
aining fields.

all_images cloudfree_images

count 2020.000000 2020.000000

mean 58.939604 20.370792

std 12.321607 8.781799

min 24.000000 2.000000

25% 49.000000 12.000000

50% 66.000000 22.000000

75% 67.000000 27.000000

max 100.000000 48.000000

Present non-null row count, mean, std, min, 25% percentile, 50% percentile, 75% percentile, and max number of images over all va
lidation fields.

all_images cloudfree_images

count 506.000000 506.000000

mean 59.215415 20.288538

std 11.970055 8.827486

min 24.000000 2.000000

25% 49.000000 11.250000

50% 66.000000 21.000000

75% 67.000000 28.000000

max 100.000000 38.000000

Training and predicting on training set...

First 5 training predictions.

drymatterPercent predictions

FieldCropId harvestYear

19099351 2017 36.664 37.693395

23566976 2019 34.718 35.583079

23593290 2019 28.000 30.321763

23594526 2019 39.554 35.652937

19080099 2017 42.077 38.955448

In [31]: df_val_predictions = run_prediction_pipeline(
 df_val_features, df_val_target, ML_CONFIG, client)

Present model scores

In [32]: df_scores = present_model_scores(
 df_train_predictions, df_val_predictions, FEATURE_HYPERPARAM, client)

Save experiment in MLflow

In [33]: artifacts = {} # TODO: add polygon plot file as artifact
save_MLflow_experiment(
 df_scores, mean_number_images, CONFIGURATIONS, HYPERPARAMETERS, DATA_PATH,
 artifacts, client)

Cleanup files on Ahsoka

In [34]: answer = query_yes_no(
 'Do you want to delete all MPSI files on Ahsoka?', default='no', timeout=5)

if answer:
 print('Deleting all MPSI files from Ahsoka...')
 dask.delayed(shutil.rmtree)(DATA_PATH).compute()
 print('All MPSI files from Ahsoka have been deleted')

else:
 print('Not deleting any MPSI files from Ahsoka.')

Present MLflow experiments

In [35]: df_experiments = collect_MLflow_runs(DATA_PATH)
Show only experiments:
- where the "expr" tag have been set, and
- after no. 8, i.e. where dataset have been filtered on yield internal
df_experiments = df_experiments[df_experiments['tags.expr'].notnull()]
filter_expr_no = 8
filter_expr_drymatter_percentage = 30

Maize dry matter yield

Predicting on validation set using trained model...

First 5 validation predictions.

drymatterPercent predictions

FieldCropId harvestYear

23526633 2018 34.437 34.971181

21247344 2018 37.634 35.019879

19126864 2017 37.367 38.222145

21470608 2018 35.531 37.789435

22001372 2018 38.700 34.855329

Computing model scores on the training and validation set...

MAE R2 Samples

Training 1.854630 0.600412 2020

Validation 2.289356 0.267158 506

The experiment have been saved in MLflow.

Do you want to delete all MPSI files on Ahsoka? [y/N]
You have "5" seconds to answer.
Timed out.
Default answer: "no" was selected.
Not deleting any MPSI files from Ahsoka.

Experiment: "MPSI-15_maize_field_level_yield_prediction" has id: "7".

In [36]: df_experiments_yield = df_experiments[
 (df_experiments['tags.expr'].astype(int) >= filter_expr_no) &
 (df_experiments[
 'tags.expr'].astype(int) < filter_expr_drymatter_percentage)]

display(show_score_table(df_experiments_yield))
viz_model_scores(
 df_experiments_yield, WIDGET_WIDTH, HV_HEIGHT, HV_XROTATION)

Training Validation

Samples MAE R2 Samples MAE R2

Name

Expr8_mean_dummy_baseline_removed_yield_outliers 2042 2.245 0.000 511 2.168 -0.003

Expr9_ElasticNet_removed_yield_outliers 2042 2.245 0.000 511 2.168 -0.003

Expr10_Lasso_removed_yield_outliers 2042 2.245 0.000 511 2.168 -0.003

Expr11_Ridge_removed_yield_outliers 2042 1.922 0.245 511 1.890 0.215

Expr12_SVR_linear_removed_yield_outliers 2042 1.958 0.206 511 1.938 0.169

Expr13_SVR_rbf_removed_yield_outliers 2042 2.209 0.027 511 2.139 0.018

Expr14_GradientBoosting_default_removed_yield_outliers 2042 1.340 0.639 511 1.664 0.380

Expr15_DTM_GradientBoosting 2042 1.340 0.642 511 1.642 0.395

Expr16_DTM_RandomForest 2042 0.745 0.866 511 1.665 0.356

Expr17_1_august_prediction 2041 1.243 0.682 511 1.766 0.316

Expr18_15_August_prediction 2041 1.245 0.682 511 1.736 0.339

Expr19_01_September_prediction 2041 1.233 0.689 511 1.718 0.363

Expr20_15_September_prediction 2038 1.237 0.692 510 1.629 0.383

Expr21_01_october_prediction 2020 1.193 0.704 506 1.645 0.369

Expr22_2019_validation_and_2017_2018_train 1644 1.164 0.720 909 2.285 -0.144

Expr23_only_2017_data 518 0.679 0.872 130 1.725 0.214

Expr24_only_2018_data 796 0.851 0.875 200 1.509 0.537

Expr25_only_2019_data 727 0.879 0.838 182 1.562 0.364

Expr26_precrop_position_features 2032 1.314 0.653 508 1.663 0.379

Expr27_position_features 2042 1.313 0.657 511 1.645 0.396

Expr28_DMI_Gradient_Boosting 2042 1.314 0.665 511 1.582 0.425

Expr29_DMI_2019_validation_and_2017_2018_train 1644 1.166 0.722 909 2.311 -0.152

Maize dry matter percentage

Out[36]: Model score over experiments
(https://bok

https://bokeh.pydata.org/

In [37]: df_experiments_drymatter = df_experiments[
 df_experiments[
 'tags.expr'].astype(int) >= filter_expr_drymatter_percentage]

display(show_score_table(df_experiments_drymatter))
viz_model_scores(
 df_experiments_drymatter, WIDGET_WIDTH, HV_HEIGHT,
 HV_XROTATION, y_lim_MAE=(0, 3))

Training Validation

Samples MAE R2 Samples MAE R2

Name

Expr30_mean_dummy_baseline_drymatter_prediction 2042 2.946 0.000 511 2.922 -0.006

Expr31_GradientBoosting_drymatter_prediction 2042 1.910 0.571 511 2.431 0.275

Expr32_RandomForest_drymatter_prediction 2042 0.858 0.892 511 2.262 0.339

Expr33_15_August_drymatter_prediction 2038 1.885 0.575 510 2.448 0.282

Expr34_01_September_drymatter_prediction 2020 1.881 0.594 506 2.312 0.259

Expr35_15_September_drymatter_prediction 2020 1.855 0.600 506 2.289 0.267

Out[37]: Model score over experiments
(https://bok

https://bokeh.pydata.org/

Experiment descriptions
This section describes the maize yield prediction experiments, that are visualized above, in details. We describe all experiment settings in details such that the following
descriptions only explain the setting difference between the experiments. Our experiment pipeline is divided into the three steps:

1. data collection and cleaning: The available maize data consists of data of 3114 individual fields from the years 2017, 2018, and 2019. However, after adding available field
polygons from DMDB and data cleaning (see details in top of this notebook) we end up with a dataset of 2553 fields. We also collect Sentinel-2 (S2) L1C satellite images of
the polygon areas in a 10x10 meter resolution consisting of all 13 bands, computed the normalized difference red edge index (NDRE), and cloud mask using the
S2cloudless algorithm. These resulting cloud free images are used as features for the model.

2. featurization: To simplify the spatial dimension of the S2 data we take the mean of each satellite image (i.e. all 13 bands and NDRE) for only the pixels fully within the field
polygon, thus we obtain one feature sample per field and not per pixel. To simplify the temporal dimension of the S2 data we interpolate linearly to a interval of 7 days, thus
creating a feature each 7 day in the time period from 1 April to 15 July resulting a feature set of 224 S2 feature given to the model. The target for the model are the maize
yield values from the column "drymatterYield_ton".

3. machine learning split, model training, and prediction: We split the maize data into training and validation set based on a 80/20 % split, respectively, resulting in 2042
training samples and 511 validation samples. We use the dummy regression method described above as the trained model in experiment 8 and use it for predictions and
scoring on the training and validation set.

Maize yield experiments
The results start from experiment 8 because we decided to exclude the experiments where we had not removed the outliers that were disturbing the predictions.

Expr8_mean_dummy_baseline_removed_yield_outliers: First we established a baseline for predicting maize yield using a dummy regression method, which simply
always predicts the constant value being the mean yield of the training targets. Such baseline results in a training mean absolute error (MAE) of 2.245 t/ha and validation
MAE of 2.168 t/ha and a coefficient of determination (R²) about 0 for both training and validation.
Expr9_ElasticNet_removed_yield_outliers: We only change the model in the experiment pipeline, to an ElasticNet model which is a linear regression with combined L1
and L2 priors as regularizer. The model scores do not change at all, from the ones reported for experiment 8, thus the ElasticNet model must have stabilized on the same
constant as the mean.
Expr10_Lasso_removed_yield_outliers: We again only change the model in the experiment pipeline, to an Lasso model which is a linear regression with only L1 prior as
regularizer and again the model scores do not change at all.
Expr11_Ridge_removed_yield_outliers: We change the model to an Ridge model which is a linear regression with only L2 as regularizer. However, experiment 11 results
in a decreased validation MAE of 1.89 t/ha from the MAE of 2.168 t/ha see in experiment 8, 9, and 10. The validation R² also increased from 0 to 0,245.
Expr12_SVR_linear_removed_yield_outliers: We change the model to an support vector regression (SVR) model using a linear kernel. This model worsened the scores
as it results in an increased validation MAE to 1.938 t/ha and a decreased in R² to 0,169.
Expr13_SVR_rbf_removed_yield_outliers: We keep using a support vector regression (SVR) model however this time with a radial basis function (RBF) kernel which
enables the SVR to be the first non-linear regression model we have experimented on the maize yield data. However, it worsened the scores further to a validation MAE of
2.139 t/ha and R² scores both about 0.
Expr14_GradientBoosting_default_removed_yield_outliers: We changed the model to a Gradient Boosting regression model, which is a more complex non-linear
model that builds multiple regression tree used in an ensemble fashion to provide a final prediction. It improved the scores drastically as the training MAE decrease to 1.34,
validation MAE decrease to 1.664 t/ha, and the validation R² increased to 0.38.
Expr15_DTM_GradientBoosting: Using the Gradient Boosting model, we added the Danish terrain model (DTM) features (i.e. relative hight, percentage of slope, angle of
slope, aspect of slope) and the resulting MAE on the validation set was 1.642 t/ha, which is not a significant decrease in the error. The R² was 0.395 on the validation set.
Expr16_DTM_RandomForest: A Random Forest regression model was tried and it resulted in same validation scores with MAE 1.665 t/ha, however it decreased on the
training score drastically with MAE of 0.745 t/ha, thus overfitting the data. This was expected as a Random forest algorithm does not handle minimization of the data bias
which Gradient Boosting algorithm does. Thus, we decide to choose the Gradient Boosting model in future experiments.

These experiments indicated that Gradient Boosting is the best algorithm as it produces the best validation MAE of around 1.6 t/ha and with less overfitting as the training MAE
is 1.34 t/ha. The experiments also show that the S2 bands contain the most descriptive information wrt. maize yield, as adding the DTM features did not significantly improved
the MAE.

Expr17_1_august_prediction: Changing the features to include S2 data from 1 April to 1 August (i.e. prediction date of 1 August) increased the validation MAE a bit to
1.766 and R² decreased to 0.316 in comparison with the best results in experiment 15.
Expr18_15_August_prediction: Changing the prediction date to 15 August increased the validation MAE to 1.736 t/ha and R² decreased to 0.339 wrt. experiment 15.
Expr19_01_September_prediction: Changing the prediction date to 1 September increased the validation MAE to 1.718 t/ha and R² decreased to 0.363 wrt. experiment
15.
Expr20_15_September_prediction: Changing the prediction date to 15 September increased the validation MAE to 1.629 t/ha and R² decreased to 0.383 wrt. experiment
15.
Expr21_01_october_prediction: Changing the prediction date to 1 October increased the validation MAE to 1.645 t/ha and R² decreased to 0.369 wrt. experiment 15.

These experiments indicated that adding S2 data in the period from 1 august to 1 September, increases the MAE, thus we assume the S2 data from this period contains
differences between fields or noise of some sort. One explanation could be the difference of flowering between maize varieties. Hence, we continued our experiments using S2
data of the period from 1 April to 15 July.

Expr22_2019_validation_and_train_2017_2018: In this experiment we trained a Gradient Boosting model on data from 2017 and 2018 and validated it only on data from
2019. This resulted in a validation MAE of 2.285 t/ha and a R² of -0.144.

We expected the MAE to worsen as the model is not trained on any samples from the same year as it is validate on. However, putting a maize yield model into production would
have such challenges, as it would deliver predictions on the 15 July but the ground truth data is not obtained until harvest later in the year. One should expect an MAE of around
2.285 t/ha if the model is set in production to predict the maize yields of 2020, however it should be improved if the 2019 data is included in its training set.

Expr23_only_2017_data: We ran the experiment pipeline only on data from 2017, which resulted in MAE on the validation set of 1.725 t/ha and an R² of 0.214. We also
reported the mean number of available S2 images and available cloud-free images over the fields in the period April 1st to July 15th used as features for the Gradient
Boosting model. In 2017 there were 4.87/22.7 (available cloud-free images out of available all S2 images) cloudless images per field on average per field on the training set
and 4.63/22.69 cloudless images on average per field on the validation set.
Expr24_only_2018_data: Running the pipeline only on data from 2018 resulted in a MAE on the validation set of 1.509 t/ha and an R² of 0.537. In 2018 there was
19.91/40.61 of cloudless images per field on the training set and 19.8/39.75 cloudless images on the validation set.
Expr25_only_2019_data: Running the pipeline only on data from 2019, resulting in an MAE on the validation set of 1.562 t/ha and an R² of 0.364. In 2019 there was a
mean of 15.23/40.5 cloudless images per field of available S2 images and available cloud-free images on the training set and 15.33/40.35 cloudless images on average on
the validation set.

These experiments showed that the year of 2017 was the year with less available S2 images. This was expected as images from Sentinel-2B was first available in the summer
of 2017, thus only images from Sentinel-2A was available to our model. However, comparing the number of cloud-free images with the weather conditions the individual years,
we see a clear trend as 2017 had a lot of rain and cloudy weather as well as the lowest ratio between available and cloud-free image, whereas 2018 had a lot of sunny weather
and the largest available to cloud-free image ratio. We also see a possible correlation between cloud-free images given the ML model and a decreased MAE of such model as
the 2018 model has a much lower MAE than the 2017 model.

Expr26_precrop_position_features: We added features to the model of both positional data of each field (i.e. centroid coordinate and identifier for its Danish region) and
pre-crop data (i.e. DMDB pre-crop identifier and directorate pre-crop identifier). Adding the pre-crop data effected the number of training and validation samples to 2032 and
508, respectively as some fields do not had a registered pre-crop. However, this did not improve the results as the validation MAE was 1.663 and R² of 0.379, which was a
bit worse in comparison with the best results in experiment 15.
Expr27_position_features: To see of the removed samples in experiment 26 caused the change in MAE, we also tried only adding the positional features. This resulted in
a validation MAE was 1.645 t/ha and R² of 0.395, which was the same in comparison with the best results in experiment 15.

We conclude that adding the positional data and/or the pre-crop data as features did not change the validation MAE or R² of our model.

Expr28_DMI_Gradient_Boosting: We added features to the model of weather data from Danish Meteorological Institute (DMI). This consisted of the 8 weather
measurements: mean air temperature, sum of evaporation, sum of global radiation, maximum air temperature, minimum air temperature, sum of precipitation, mean soil
temperature. These are measured daily in the interval from 1 April to 15 July but are aggregated to a 7 days interval, similar to the S2 data. Adding the DMI data as features
resulted in the best Gradient Boosting model of all experiments so fare, as the validation MAE decreased to 1.582 t/ha and R² increased to 0.425.

We conclude that adding DMI data did improved the yield prediction model by a reduction in validation MAE from 1.642 t/ha in experiment 15 to 1.582 t/ha in experiment 28 and
increase in validation R² from 0.395 to 0.425, respectively.

Expr29_DMI_2019_validation_and_2017_2018_train: As experiment 28 was the last one where we tried to improve the prediction, we performed experiment 22 again
(i.e. trained the model on data from 2017 and 2018 and validated it only on data from 2019), but this time including the position, and DMI features. This resulted in a
worsened validation MAE as it increased from 2.285 t/ha in experiment 22 to 2.311 t/ha in this experiment and the same for validation R² as it deceased from -0.144 to
-0.152.

Adding DMI features in experiment 28 improved the model, but it worsened the model in experiment 29. We assume the big difference in weather over the years 2017 to 2019
(as explained earlier wrt. experiment 23 to 25) is the reason for this difference in model performance. It could be that the difference in weather data does not enable the model to
find any common patterns in the data between the years.

Maize dry matter percentage experiments
In the following experiments, we changed the target such that we predicted the dry matter percentage of the yield. The same features are used as in experiment 28.

Expr30_Mean_dummy_baseline_drymatter_prediction: Using the dummy baseline regression model to predict the mean dry matter percentage we had a MAE of 2.922
% and a R² of -0.006 on the validation set.
Expr31_GradientBoosting_drymatter_prediction: The Gradient Boosting model improved the results a bit with a MAE of 2.431 % and a R² of 0.275 on the validation set.
expr32_RandomForest_drymatter_prediction: The Random Forest model overfitted again with a MAE of 0.858 % on the training set and a MAE of 2.262 % on the
validation set. Furthermore, the R² on the training set was 0.571 and 0.339 on the validation set.

Because of the overfitting by the Random Forest model, we choose to use the Gradient Bossting model for the following experiments, where we changed the prediction date.

Expr33_15_August_drymatter_prediction: With a prediction date the 15 August, the MAE was 2.448 % and the R² was 0.282, thus the results had not improved
significantly compared to experiment 31.
expr34_01_September_drymatter_prediction: With a prediction date the 1 September, the MAE was 2.312 % and the R² was 0.259, thus the results had still not
improved significantly compared to experiment 31.
Expr35_15_September_drymatter_prediction: With a prediction date the 15 September, the MAE was 2.289 % and the R² was 0.267, this the results had still not
improved significantly compared to experiment 31, even though we see a slight decrease in MAE.

Predicting later on the growth season reduced the MAE with only 0.1 %.

Conclusion
We conclude following for the 3 different topics of this project.

The dataset
Several cleaning steps on the dataset were done where we started from having data from 3114 fields and the cleaning procedures reduced it to 2553 fields. However, depending
on the experiment, e.g. changing the prediction date or restriction of year, the number of sample differed. The final dataset, common for most experiments, consisted on a small
amount of fields which resulted in only 2042 training samples and 511 validation samples. The fields were mainly located in Jylland.

The maize yield
A baseline regression model that always predicts the mean of the maize yield had a mean absolute error (MAE) of 2.168 t/ha and coefficient of determination (R²) -0.003. The
best performing model was the Gradient Boosting regression model produced in experiment 28 where the MAE was 1.582 t/ha and the R² was 0.425. The results of experiment
28 was achieved using the following features, i.e. input data to the model:

Sentinel-2 images, without clouds, linear interpolated, resampled to 7 days intervals from 1 April to 15 July, and averaged over all pixels within the field polygon:\
S2_L1C_B01 , S2_L1C_B02 , S2_L1C_B03 , S2_L1C_B04 , S2_L1C_B05 , S2_L1C_B06 , S2_L1C_B07 , S2_L1C_B08 , S2_L1C_B8A , S2_L1C_B09 , S2_L1C_B10 ,
S2_L1C_B11 , S2_L1C_B12 , and S2_L1C_NDRE .

Danish terrain height model (DTM) averaged over all pixels within the field polygon:\ field_relative_mean , slope_pct , slope_angle , and slope_aspect .
Field centroid coordinate position and the Danish region the field lies within:\ geox , geoy , and regionId .
Danish Meteorological Institute (DMI) daily measurements resampled to 7 days intervals from 1 April to 15 July using the following aggregation methods per measurement:\
DMI_air_temperature : mean , std , min , and max ,\ DMI_evaporation : mean , std , min , max , and sum \ DMI_global_radiation : mean , std , min , max ,

and sum ,\ DMI_maximum_temperature : mean , std , min , and max ,\ DMI_minimum_temperature : mean , std , min , and max ,\ DMI_corrected_precipitation :
mean , std , min , max , and sum ,\ DMI_soil_temperature : mean , std , min , and max .

Adding the DTM, position, and DMI features decreased the MAE with only 0.082 t/ha (from 1.664 t/ha to 1.582 t/ha) and increased the R² with 0.045 (from 0.38 to 0.425) which
is not a significant improvement. That means that the Sentinel-2 data already represent the information found in these added features. However, the Gradient Boosting model
performed better than the baseline model with a decreased MAE of 0,586 t/ha (from 2.168 t/ha to 1.582 t/ha).

The maize dry matter percentage
The maize experiments were performed using the same features as explained above for experiment 28. The baseline model that always predicts the mean dry matter
percentage had a MAE of 2.946 % and a R² of -0.006. The best performing machine learning algorithm was again the Gradient Boosting model. Predicting dry matter
percentage on 15 July had a MAE of 2.431 %, whereas predicting later on the growth season (i.e. the 15 September) resulted in the best performing model with a MAE of 2.289
and a R² of 0.267. The best performing model is slightly better than the baseline model with a decreased MAE of 0.657 % (from 2.946 % to 2.289 %).

General observations
Generally for the maize project, we conclude that the limited amount of data was not representable for all the maize fields in Denmark and that the machine learning models
need more data and of a higher quality, before significant improvements can be achieved. The result of the Random Forest experiments (experiment 16 and 32) suggest that
there is potential for achieving better results if more data was available, as the model was able to find a strong coherence between the features and targets on the training set.
Furthermore, experiment 24, 25, and 26 show that the number of cloud-free images used for features effected the model performance, as more images resulted in a decreased
MAE. 2018 were the year with most more cloud-free images and the model trained and validated on data from this year had a validation MAE of 1.509 t/ha which was the lowest
achieved in our experiments.

Future work
We describe the following future work topics in a non prioritized list.

Expand the amount of the maize yield and dry matter percentage data.
Add maize varieties as features, perhaps based on unsupervised clustering, see MPSI-132 (https://jira.seges.dk/browse/MPSI-132).
Add soil type as features.
The prediction error could be decreased if we remove fields that do not have images in the date range June 20 to July 20. In production minimum one image has to be
present in that date range in order to make prediction.
Use Sentinel-1 radar data to when there are cloudy Sentinel-2 images.
Use generated cloud-free Sentinel-2 data based on Sentinel-1 data, which we have worked on in the Satellite Images in Cloudy Weather
(https://confluence.seges.dk/display/SIICW) project.
Feature selection: almost all of the Sentinel-2 bands are mutually correlated thus we should only select a few as features instead of all of them.
Use other models which captures the temporal and spatial relation, e.g.RNNs and/or CNNs.
Impute NaN feature values, see MPSI-124 (https://jira.seges.dk/browse/MPSI-124).

https://jira.seges.dk/browse/MPSI-132
https://confluence.seges.dk/display/SIICW
https://jira.seges.dk/browse/MPSI-124

